Efficient Equilibria in Polymatrix Coordination Games
نویسندگان
چکیده
We consider polymatrix coordination games with individual preferences where every player corresponds to a node in a graph who plays with each neighbor a separate bimatrix game with non-negative symmetric payoffs. In this paper, we study α-approximate k-equilibria of these games, i.e., outcomes where no group of at most k players can deviate such that each member increases his payoff by at least a factor α. We prove that for α ≥ 2 these games have the finite coalitional improvement property (and thus α-approximate k-equilibria exist), while for α < 2 this property does not hold. Further, we derive an almost tight bound of 2α(n− 1)/(k − 1) on the price of anarchy, where n is the number of players; in particular, it scales from unbounded for pure Nash equilibria (k = 1) to 2α for strong equilibria (k = n). We also settle the complexity of several problems related to the verification and existence of these equilibria. Finally, we investigate natural means to reduce the inefficiency of Nash equilibria. Most promisingly, we show that by fixing the strategies of k players the price of anarchy can be reduced to n/k (and this bound is tight).
منابع مشابه
On minmax theorems for multiplayer games Citation
We prove a generalization of von Neumann’s minmax theorem to the class of separable multiplayer zerosum games, introduced in [Bregman and Fokin 1998]. These games are polymatrix—that is, graphical games in which every edge is a two-player game between its endpoints—in which every outcome has zero total sum of players’ payoffs. Our generalization of the minmax theorem implies convexity of equili...
متن کاملApproximating Nash Equilibria in Tree Polymatrix Games
We develop a quasi-polynomial time Las Vegas algorithm for approximating Nash equilibria in polymatrix games over trees, under a mild renormalizing assumption. Our result, in particular, leads to an expected polynomial-time algorithm for computing approximate Nash equilibria of tree polymatrix games in which the number of actions per player is a fixed constant. Further, for trees with constant ...
متن کاملConstrained Pure Nash Equilibria in Polymatrix Games
We study the problem of checking for the existence of constrained pure Nash equilibria in a subclass of polymatrix games defined on weighted directed graphs. The payoff of a player is defined as the sum of nonnegative rational weights on incoming edges from players who picked the same strategy augmented by a fixed integer bonus for picking a given strategy. These games capture the idea of coord...
متن کاملTractable Algorithms for Approximate Nash Equilibria in Generalized Graphical Games with Tree Structure
We provide the first fully polynomial time approximation scheme (FPTAS) for computing an approximate mixedstrategy Nash equilibrium in graphical multi-hypermatrix games (GMhGs), which are generalizations of normal-form games, graphical games, graphical polymatrix games, and hypergraphical games. Computing an exact mixed-strategy Nash equilibria in graphical polymatrix games is PPADcomplete and ...
متن کاملComputing Constrained Approximate Equilibria in Polymatrix Games
This paper is about computing constrained approximate Nash equilibria in polymatrix games, which are succinctly represented manyplayer games defined by an interaction graph between the players. In a recent breakthrough, Rubinstein showed that there exists a small constant ǫ, such that it is PPAD-complete to find an (unconstrained) ǫ-Nash equilibrium of a polymatrix game. In the first part of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015